Crystal structure of the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ approximant of the $\mathrm{Al}-\mathrm{Cr}-\mathrm{Fe}$ decagonal quasicrystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys.: Condens. Matter 162283
(http://iopscience.iop.org/0953-8984/16/13/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 27/05/2010 at 14:12

Please note that terms and conditions apply.

Crystal structure of the orthorhombic $\mathrm{Al}_{4}(\mathbf{C r}, \mathrm{Fe})$ approximant of the Al-Cr-Fe decagonal quasicrystal

D W Deng ${ }^{1}$, Z M Mo and K H Kuo
Department of Materials Engineering, Dalian University of Technology, Dalian 116023, People's Republic of China
and
Beijing Laboratory of Electron Microscopy, Institute of Physics, Chinese Academy of Sciences, PO Box 2724, Beijing 100080, People's Republic of China
E-mail: d.deng@fz-juelich.de

Received 22 October 2003
Published 19 March 2004
Online at stacks.iop.org/JPhysCM/16/2283 (DOI: 10.1088/0953-8984/16/13/009)

Abstract

The crystal structure of the orthorhombic phase $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ with a composition of $\mathrm{Al}_{80.6} \mathrm{Cr}_{10.7} \mathrm{Fe}_{8.7}$ has been determined by single-crystal x-ray diffraction (table 2). There are 11 crystallographically independent $\mathrm{Cr} / \mathrm{Fe}$ sites, of which 10 are icosahedrally coordinated. Of the 28 crystallographically independent Al sites 5 are icosahedrally coordinated. However, owing to the presence of many partial occupancies, caused by split atoms, some of these coordinations are only pseudo-icosahedral with effective coordination numbers $\mathrm{CN}_{\text {eff }} \neq 12$ (section 4.3). The icosahedral and pseudo-icosahedral clusters are oriented with a two-fold axis parallel to [100]. They are linked either by vertex-, edgeor face-sharing or by mutual interpenetration, thus forming large clusters of icosahedra in the (100) layers with one of the five-fold axes in the [010] direction. Four of the 12 atoms defining the vertices of an icosahedral cluster lie in a mirror plane (F plane), while the other atoms are in puckered layers below and above the mirror plane. Thus, the icosahedral cluster consists of layers PFP^{\prime} of three atoms thick. Two such layers stack within one lattice constant $a \approx 1.25 \mathrm{~nm}$. The interconnection of icosahedra in the PFP^{\prime} layer block forms large triangular and hexagonal structural motifs, though they have only two-fold rotational symmetry. Similar geometrical motifs but displaying three- or six-fold symmetry do exist in the structure of the hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$, $\kappa-(\mathrm{AlCrNi}), \lambda-\mathrm{Al}_{4} \mathrm{Mn}$ and $v-\mathrm{Al}_{12} \mathrm{Cr}_{2} \mathrm{Fe}$ phases.

1. Introduction

A body-centred orthorhombic phase $\mathrm{Al}_{4} \mathrm{TM}$ (transition metal) with $a \approx 1.25 \mathrm{~nm}, b \approx 1.25 \mathrm{~nm}$, and $c \approx 3.05 \mathrm{~nm}$ has been found to coexist with the decagonal quasicrystal having a period

[^0]Table 1. Body-centred orthorhombic (bco) $\mathrm{Al}_{4} \mathrm{TM}$ with $a \approx 1.25 \mathrm{~nm}, b \approx 1.25 \mathrm{~nm}$ and $c \approx 3.05 \mathrm{~nm}$ in various Al-TM alloy systems.

Alloy or compound	Lattice or space group	a	Lattice parameters (nm)		

${ }^{\text {a }}$ Unstable, transforming into a monoclinic phase $a=1.76 \mathrm{~nm}, b=1.76 \mathrm{~nm}, c=3.05 \mathrm{~nm}$ and $\beta \approx 90^{\circ}$.
${ }^{\mathrm{b}}$ Unstable, transforming into the hexagonal $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ after heating for 25.5 h at $600^{\circ} \mathrm{C}$.
of 1.25 nm along its periodic ten-fold direction in a number of $\mathrm{Al}-\mathrm{TM}$ alloys by means of transmission electron microscopy (table 1). Though a structural model of the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ phase (Sui et al 1997) has been given by comparing its high-resolution electron microscopy image with the well known structure of $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Shoemaker et al 1989), no xray structural determination has been made yet. Since this orthorhombic $\mathrm{Al}_{4} \mathrm{TM}$ has occurred in no less than six different Al-TM alloys, it must be a common structure in Al-TM alloys. Considering all of this and also its close structural relation to the Al-TM decagonal quasicrystal, it is perhaps of interest to make an x-ray single-crystal study of its crystal structure and compare its icosahedral structural motifs with those in other known Al-TM decagonal approximants. Recently, the crystal structure of the isostructural $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Ni})$ with $R 1=0.0728$ was briefly reported (Deng and Kuo 2002). The following is a detailed description of the structure of the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ with $R 1=0.0674$.

2. Experimental details

The $\mathrm{Al}_{12} \mathrm{CrFe}_{2}$ alloy was prepared by melting a mixture of high purity Al ($99.9999 \mathrm{wt} \%$), Cr ($99.95 \mathrm{wt} \%$) and Fe ($99.9 \mathrm{wt} \%$) in an electric furnace and slowly cooling it. An prismatic needle-like single crystal with the dimensions $0.04 \times 0.04 \times 0.13 \mathrm{~mm}^{3}$ was selected in the cavities of the cast ingot. The composition of this single crystal is determined by microelectron probe x-ray analysis and it corresponds to $\mathrm{Al}_{80.6} \mathrm{C}_{10.7} \mathrm{Fe}_{8.7}$, or roughly $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$. Using convergent-beam electron diffraction, Sui et al (1995) have shown earlier the body centred orthorhombic lattice and the mmm point group of $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$. In the present study we have reconfirmed the (001) mirror plane by this technique so that the space group is Immm (no 71), but not Imm 2 .

A single-crystal x-ray diffraction experiment was performed at room temperature (294 \pm 1 K) on a Bruker P 4 diffractometer equipped with a graphite monochromator using $\mathrm{Mo} \mathrm{K} \alpha$ radiation. Its unit cell dimension was obtained and refined by 35 well centred reflections with $4.1^{\circ}<\theta<26.7^{\circ}$. Data collection was monitored by three standards every 100 th reflection. No decay was observed except the statistic fluctuation within the range of $\pm 2.8 \%$. Raw intensities were corrected for Lorentz and polarization effects, and for absorption by an empirical method
based on ψ-scan data (Kopfmann and Hubber 1968). All atoms were subjected to anisotropic refinement.

Data collection was controlled by the XSCANS program. Computations were performed using the SHELXTL NT program package, version 5.10 (Sheldrick et al 1985) on an IBM PC 586 computer. Analytic expressions of atomic scattering factors were employed and anomalous dispersion corrections were incorporated (International Tables for X-ray Crystallography, 1989). Crystal drawings were produced with XP (Bruker) and SCHAKAL 92 (Keller 1992).

3. Structure determination

Straightforward application of direct methods did not produce a structural model that would refine to a R factor below 50%. The hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ phase is an important approximant of the Al-Mn decagonal quasicrystal (Audier and Guyot 1986, Bendersky 1987, Shoemaker et al 1989, Le Lann and Shoemaker 1993, Sui et al 1997). The hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Cr}$ (Kuo 1990, Bendersky et al 1991, Wen et al 1991, 1992, Audier et al 1995) is isostructural to it. In our attempt to solve the structure of the $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ phase, we looked at the chemically and structurally closely related compounds $\mu-\mathrm{Al}_{4} \mathrm{Cr} / \mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Shoemaker et al 1989) and the hexagonal $v-\mathrm{Al}_{4}(\mathrm{Fe}, \mathrm{Cr})$ (Mo et al 2000). By analysing high-resolution electron microscopy images of the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$, its local structural arrangement (Sui et al 1997) was found to be similar to the projected structure along the pseudo-five-fold axis of the hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ phase. A fragment of the structure of the $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ phase and the $v-\mathrm{Al}_{4}(\mathrm{Fe}, \mathrm{Cr})$ phase (see the shaded area $\mathrm{TM}(3)-\mathrm{Al}(2)-\mathrm{TM}(8)-\mathrm{Al}(1)-\mathrm{TM}(5)-\mathrm{Al}(5)-\mathrm{TM}(2)-\mathrm{Al}(12)$ in figure 1 (a)) was then used in the SHELXTL software package (Sheldrick et al 1985) to generate the structural model of the $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ phase. This allowed us to obtain a feasible structural model with a R value of about 28%. After several iterations of least-squares calculation coupled with difference Fourier syntheses, 39 independent atomic positions with a total of 253 parameters were refined by using SHELXL (Sheldrick et al 1985). The final refinement led to $R 1=0.0674$ for 3206 reflections with $I>4 \sigma(I)$ and a goodness of fit $S=0.846$. The final difference electron-density map shows no obvious features. Details of crystal parameters, data collection and structure refinements are given in table 2. The refined atom sites and isotropic displacement parameters are listed in table 3. The anisotropic displacement parameters are listed in table 4. There are $11 \mathrm{Cr} / \mathrm{Fe}(\mathrm{TM}=\mathrm{Cr} / \mathrm{Fe})$ and 28 Al independent sites in a unit cell. Two Al sites $(\mathrm{Al}(5)$ and $\mathrm{Al}(15))$ are statistically occupied by $\mathrm{Al}(0.75)$ and $\mathrm{TM}(0.25)$ atoms (Cr and Fe atoms are not differentiated). As in many Al-TM decagonal quasicrystals (Würschum et al 1995) and their crystalline approximants, such as $\mathrm{Al}_{68} \mathrm{Pd}_{20} \mathrm{Ru}_{12}, c P 296-46.85$ (Mahne and Steurer 1996), $\mathrm{Al}_{57.3} \mathrm{Cu}_{31.4} \mathrm{Ru}_{11.3}, c P 140-25.1$ (Sugiyama et al 2000) and $\mathrm{Al}_{2.75} \mathrm{Ir}$, cP60-30 (Grin et al 1997), vacancies are also found profoundly in Al sites ($\mathrm{Al}(19)-\mathrm{Al}(28)$) and in two TM sites $(\mathrm{TM}(6)$ and $\mathrm{TM}(10))$ in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$. Thus the Pearson symbol becomes oI366-59.56. Excluding the abnormal short distances between atomic sites of partial and/or split occupancy of $0.50-0.67$, the atomic distance ranges are: TM-TM, $0.2419-0.2953 \mathrm{~nm}$; Al-Al, $0.2341-0.2949 \mathrm{~nm}$; and Al-TM, 0.2453-0.2980 nm.

4. Description of the structure

4.1. Layer structure

The Al-Mn and Al-Cr decagonal quasicrystals are known to have a six-layer structure with a periodicity of about 1.25 nm along its decagonal axis (Bendersky 1987, Wen et al 1992). Their crystalline approximants often also have a lattice parameter of this dimension and a six-layer

Figure 1. (a), (b) The [100] projection of the PFP^{\prime} layers of the structure of $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$: full circles, $\mathrm{Cr} / \mathrm{Fe}$ atoms; open circles, Al atoms. Atoms in the flat layer F are connected, whereas atoms in the puckered layers P and P^{\prime} across the mirror F (superimposed) are not. (a) The triangular (shaded) and hexagonal (bold lines) structural motifs; (b) icosahedra (shaded) and the icosahedral clusters I3V, I3P, I6F and I6P. (c) The [010] projection shows the PFP' pfp^{\prime} six layers and the icosahedra centred at TM7 and TM10 binding together the PFP' and pfp' layer blocks.
structure $\mathrm{PFP}^{\prime} \mathrm{pfp}^{\prime}$, whereas the pfp^{\prime} layer block is related to PFP^{\prime} by a symmetry operation. This six-layer structure was confirmed by Sui et al (1997) for orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ by high-resolution electron microscopy.

Figures 1(a) and (b) show the structural projection of the PFP^{\prime} three layers of $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ along the a axis. For the puckered layer P^{\prime}, x varies from 0.1130 to 0.1915 and the atomic sites in the two puckered layers P and P^{\prime} are in mirror-reflecting positions across the flat F layer at $x=0$ (see figure 1(c)). The atoms in the F layer, open circles being Al atoms and full circles TM atoms, are connected in figures $1(\mathrm{a})$ and (b) while those in the puckered P and P^{\prime} layers (superimposed on each other) are not. Figure 1(b) highlights the icosahedra (shaded, drawn in broken lines) as well as their connections in the PFP^{\prime} layers, whereas figure 1(a) shows triangular (shaded area) and hexagonal (outlined in bold lines) complex motifs of interconnected icosahedra. The origin was chosen at the centre of figures 1(a) and (b) in order to show this hexagonal icosahedral cluster or structural motifs. Thus, the PFP' threelayer block, in fact, is an icosahedral compound layer with one of the two-fold axes of these icosahedra in the [100] direction. Since the layers pfp' are related to the PFP^{\prime} layers by a body centred translation, we need only to discuss the structure of the PFP^{\prime} three layers, though some atoms in the p layer have also been involved in some icosahedra in the FP'p layer block (see figure 1(c)). The PFP'pfp' six-layer structure can be seen clearly in it. Obviously, the F and f layers are flat mirrors at $x=0$ and $1 / 2$, respectively, and the puckered P and P^{\prime} layers as well as the p and p^{\prime} layers are mirror images of each other. Circles of 10 atoms indicate icosahedral or pentagonal antiprisms with their five-fold axes in the [010] direction. Furthermore, the PFP^{\prime}

Table 2. Details of data collection, processing and structure refinement for $\mathrm{Al}_{4} \mathrm{TM}(\mathrm{TM}=\mathrm{Cr} / \mathrm{Fe})$.

Sample code	$\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$
Molecular formula	$\mathrm{Al}_{80.6} \mathrm{Cr}_{10.7} \mathrm{Fe}_{8.7}$
Pearson's symbol	oI366-59.56
Colour and habit	Opaque needle
Crystal size	$0.04 \times 0.04 \times 0.13 \mathrm{~mm}^{3}$
Crystal system	Orthorhombic
Space group	Immm (no 71)
Unit cell parameters	$a=1.2500(6) \mathrm{nm}, \alpha=90.00^{\circ}$
	$b=1.2617(2) \mathrm{nm}, \beta=90.00^{\circ}$
	$c=3.0651(8) \mathrm{nm}, \gamma=90.00^{\circ}$
	$V=4.8344(8) \mathrm{nm}^{3}$
Atoms/cell	306.44
Density (calc)	$3.432 \mathrm{~g} \mathrm{~cm}^{-3}$
Diffractometer	Bruker P4
Radiation	Graphite-monochromatized
	Mo $\mathrm{K} \alpha, \lambda=0.71073 \AA$
Temperature	$295 \pm 2 \mathrm{~K}$
Scan type	ω-scan
Data collection range	$\begin{aligned} & -18<h<19,-19<k<17 \\ & -46<l<38 ; \theta_{\max }=50^{\circ} \end{aligned}$
Reflections measured	
total:	4900
unique (n):	4900 observed [$I>4 \sigma(I)$]: 3206
Absorption coefficient	$7.650 \mathrm{~mm}^{-1}$
Min. and max. transmission	0.2684, 0.5372
No. of variables, p	253
R1	0.0674
$w R 2$	0.1253
Goof	$S=0.846$
Residual extrema in final difference map	+1.79 to $-1.46 \mathrm{e} \AA^{-3}$
Number of independent atom position	39 (11TM+28Al)

and pfp^{\prime} icosahedral layer blocks are bound together by the icosahedra (shaded in figure 1(c)) centred at $\mathrm{TM}(7)$ and $\mathrm{TM}(10)$ in layers $\mathrm{P} / \mathrm{p}^{\prime}$ and p / P.

4.2. Icosahedra and their connections

In figure 1(b), a large number of icosahedra with centres in the F layer are shaded and drawn in broken lines (the remaining ones can be obtained by the point group symmetry mmm). All these icosahedra have one of their two-fold axes perpendicular to the PFP^{\prime} layers and two of their five-fold axes in the F layer. Different interconnections of these icosahedra can be noted. The three icosahedra centred at $\mathrm{TM}(3), \mathrm{TM}(3)$ and $\mathrm{TM}(2)$ in the upper part of figure $1(\mathrm{~b})$ share vertices $\mathrm{Al}(3), \mathrm{Al}(12)$ and $\mathrm{Al}(12)$, forming an I 3 V cluster. Kreiner and Franzen (1995, 1997) called this an I3 cluster and have used it to discuss the structure of a large number of intermetallic compounds of transition metals. The letter V is added here to I3 to denote vertex-sharing in order to differentiate it from I3F, three face-sharing icosahedra, and I3P, three mutually (inter)penetrated icosahedra. The I3V cluster exists in a number of places in the PFP^{\prime} layer block in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$, as can be seen in figure 1(a).

Three icosahedra centred at $\mathrm{TM}(3), \mathrm{TM}(6)$ and $\mathrm{Al}(2)$ in the lower-right part of figure 1(b) interpenetrate into each other forming a fused I3P cluster. Two mutually interpenetrated

Table 3. Atomic sites, coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $\mathrm{Al}_{4} \mathrm{TM}(\mathrm{TM}=\mathrm{Cr} / \mathrm{Fe})$. (Note: $U_{\text {eq }}$. is defined as one-third of the trace of the orthogonalized \mathbf{U} tensor.)

Atoms	Site	x	y	z	$U_{\text {eq. }}$	Occ.
$\mathrm{TM}(1)^{\mathrm{a}}$	2b	0.0000	0.5000	0.5000	0.0245(4)	1
$\mathrm{TM}(2)^{\text {b }}$	4 i	0.0000	0.0000	0.1448(2)	0.0239(3)	1
$\mathrm{TM}(3)^{\text {b }}$	81	0.0000	0.1941(3)	0.2874(3)	0.0252(2)	1
$\mathrm{TM}(4)^{\mathrm{a}}$	4h	0.0000	0.1057(4)	0.5000	0.0236(3)	1
$\mathrm{TM}(5)^{\text {b }}$	81	0.0000	0.3051(3)	0.0733(1)	0.0305(2)	1
$\mathrm{TM}(6)^{\mathrm{a}}$	81	0.0000	0.2980(4)	0.3615(7)	0.0237(3)	0.70
$\mathrm{TM}(7)^{\text {b }}$	8 m	0.3271(5)	0.0000	0.2363(2)	0.0247(2)	1
$\mathrm{TM}(8)^{\text {b }}$	4 j	0.0000	0.5000	0.2134(3)	0.0184(3)	1
$\mathrm{TM}(9)^{\text {b }}$	4 g	0.0000	0.2048(0)	0.0000	0.0173(5)	1
TM(10) ${ }^{\text {a }}$	160	0.1742(3)	0.2018(1)	0.0460(2)	0.0266(2)	0.70
TM(11)	4 e	0.1139(7)	0.0000	0.0000	0.0180(5)	1
$\mathrm{Al}(1)$	81	0.0000	0.3851(4)	0.1473(4)	0.0099(4)	1
$\mathrm{Al}(2)^{\mathrm{b}}$	81	0.0000	0.3963(8)	0.2866(6)	0.0075(3)	1
$\mathrm{Al}(3)$	4 i	0.0000	0.0000	0.2911(1)	0.0123(5)	1
$\mathrm{Al}(4)$	4j	0.0000	0.5000	0.0652(1)	0.0118(5)	1
$\mathrm{Al}(5) / \mathrm{TM}^{\mathrm{b}}$	81	0.0000	0.1010(1)	0.0719(8)	0.0283(4)	0.75/0.25
$\mathrm{Al}(6)$	8 m	0.1915(6)	0.5000	0.1749(1)	0.0142(4)	1
$\mathrm{Al}(7)^{\mathrm{a}}$	160	0.1911(7)	0.3079(5)	0.3088(6)	0.0140(3)	1
$\mathrm{Al}(8)$	160	0.1136(7)	0.3135(7)	0.2207(2)	0.0125(3)	1
$\mathrm{Al}(9)^{\mathrm{a}}$	8 m	0.1850(0)	0.0000	0.0917(5)	0.0225(5)	1
$\mathrm{Al}(10)$	8 m	0.1173(9)	0.5000	0.3507(4)	0.0194(4)	1
$\mathrm{Al}(11)$	8 n	0.1130(6)	0.3844(8)	0.0000	0.0125(4)	1
$\mathrm{Al}(12)$	81	0.0000	0.1224(7)	0.2095(1)	0.0124(4)	1
$\mathrm{Al}(13)^{\mathrm{a}}$	4h	0.0000	0.3011(4)	0.5000	0.0313(8)	1
$\mathrm{Al}(14)$	160	0.1808(5)	0.1198(0)	0.2633(6)	0.0115(3)	1
$\mathrm{Al}(15) / \mathrm{TM}$	8 m	0.1788(6)	0.0000	0.1820(7)	0.0342(4)	0.75/0.25
$\mathrm{Al}(16)$	160	0.3104(5)	0.1127(4)	0.4072(9)	0.0156(3)	1
$\mathrm{Al}(17)$	160	0.1199(9)	0.1145(7)	0.3523(3)	0.0161(3)	1
$\mathrm{Al}(18)$	160	0.3847(3)	0.3047(5)	0.3639 (7)	0.0166(3)	1
$\mathrm{Al}(19)$	160	0.1286(5)	0.4013(1)	0.4276(5)	0.0208(6)	0.50
$\mathrm{Al}(20)$	160	0.3162(6)	0.0898(5)	0.0213(8)	0.0123(5)	0.50
$\mathrm{Al}(21)$	8 m	0.1869(2)	0.0000	0.4744(4)	0.0110(7)	0.50
$\mathrm{Al}(22)$	160	0.1824(1)	0.1849(9)	0.4796(7)	0.0097(5)	0.50
$\mathrm{Al}(23)$	160	0.1161(3)	0.1870(0)	0.4332(0)	0.0133(5)	0.50
$\mathrm{Al}(24)$	8 m	0.1154(3)	0.0000	0.4358(1)	0.0167(8)	0.50
$\mathrm{Al}(25)$	160	0.1835(7)	0.3013(6)	0.3965(8)	0.0291(5)	0.66
$\mathrm{Al}(26)$	4 i	0.0000	0.0000	0.4198(0)	0.0159(2)	0.65
$\mathrm{Al}(27)$	81	0.0000	0.1848(2)	0.4257(3)	0.0266 (7)	0.67
$\mathrm{Al}(28)$	81	0.0000	0.4175(2)	0.4233(1)	0.0285(7)	0.64

${ }^{\text {a }}$ Atoms with pseudo-icosahedral coordination.
${ }^{\mathrm{b}}$ Atoms with icosahedral coordination.
icosahedra share a pentagon as well as their centres, or a lens-shaped pentagonal bi-pyramid, such as the shaded $\mathrm{TM}(3)-\mathrm{Al}(2)-\mathrm{TM}(6)-\mathrm{Al}(17)$. Three mutually interpenetrated icosahedra share a triangular hexahedron (or two face-sharing tetrahedra), such as the heavily shaded $\mathrm{Al}(7)-\mathrm{TM}(3)-\mathrm{Al}(2)-\mathrm{TM}(6)-\mathrm{Al}(7)$. Another I3P cluster exists among the icosahedra centred at $\mathrm{TM}(8), \mathrm{Al}(2)$ and $\mathrm{Al}(2)$ drawn in the right-hand part of figure 1(b). Other I3P clusters can be generated by the point group symmetry mmm . Such I3V and I3P clusters exist in

Table 4. Anisotropic displacement parameters $\left(\AA^{2}\right)$ for $\mathrm{Al}_{4} \mathrm{TM}(\mathrm{TM}=\mathrm{Cr} / \mathrm{Fe})$. (Note: the exponent takes the form: $-2 \pi^{2} \Sigma \Sigma U_{i j} h_{i} h_{j} \mathbf{a}_{i}^{*} \mathbf{a}_{j}^{*}$.)

Atoms	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
TM(1)	$0.0211(7)$	0.0263(8)	0.0260 (7)	0.000	0.000	0.000
TM(2)	0.0221(5)	0.0254(5)	0.0242(5)	0.000	0.000	0.000
TM(3)	0.0230(4)	0.0218(4)	0.0309(4)	0.0006(3)	0.000	0.000
TM(4)	0.0213(5)	0.0225(5)	0.0268(5)	0.000	0.000	0.000
TM(5)	0.0423(4)	0.0262(4)	0.0229(4)	-0.0010(3)	0.000	0.000
TM(6)	0.0170(5)	0.0235(5)	0.0306(5)	0.0019(5)	0.000	0.000
TM(7)	0.0222(4)	0.0263(4)	0.0255(4)	0.000	0.0016(3)	0.000
TM(8)	0.0182(5)	0.0180(5)	0.0189(5)	0.000	0.000	0.000
TM(9)	0.0128(9)	0.0250 (10)	0.0142(8)	0.000	0.000	0.000
TM(10)	0.0333(4)	0.0225(3)	0.0241(3)	0.0019(3)	-0.0102(3)	-0.0027(4)
TM(11)	0.0122(9)	0.0208(9)	0.0209(9)	0.000	0.000	0.000
$\mathrm{Al}(1)$	0.0145(7)	0.0095(6)	0.0058(6)	-0.0032(6)	0.000	0.000
$\mathrm{Al}(2)$	0.0071(6)	0.0079(6)	0.0074(6)	-0.0007 (6)	0.000	0.000
$\mathrm{Al}(3)$	$0.0138(10)$	0.0087(9)	$0.0145(10)$	0.000	0.000	0.000
$\mathrm{Al}(4)$	0.0092(9)	0.0087(9)	0.0175(10)	0.000	0.000	0.000
$\mathrm{Al}(5) / \mathrm{TM}$	0.0311(7)	0.0253(7)	0.0287(7)	0.0004(6)	0.000	0.000
$\mathrm{Al}(6)$	0.0173(7)	0.0145(7)	0.0110(7)	0.000	0.0001(6)	0.000
$\mathrm{Al}(7)$	0.0145(5)	0.0110(5)	0.0164(5)	0.0022(4)	0.0010(4)	$-0.0003(5)$
$\mathrm{Al}(8)$	0.0112(5)	0.0130(5)	0.0134(5)	0.0018(4)	-0.0016(4)	-0.0005(4)
$\mathrm{Al}(9)$	0.0138(7)	0.0409(9)	0.0127(7)	0.000	-0.0004(7)	0.000
$\mathrm{Al}(10)$	0.0100(7)	0.0387(9)	0.0094(7)	0.000	0.0020(6)	0.000
$\mathrm{Al}(11)$	0.0107(6)	0.0097(6)	0.0171(7)	0.000	0.000	0.0024(6)
$\mathrm{Al}(12)$	0.0100(7)	0.0147(7)	0.0125(7)	-0.0001(6)	0.000	0.000
Al(13)	0.0131(11)	0.0115(11)	0.0694(18)	0.000	0.000	0.000
$\mathrm{Al}(14)$	0.0101(4)	0.0111(5)	0.0134(5)	-0.0022(4)	0.0008(4)	0.0005(4)
$\mathrm{Al}(15) / \mathrm{TM}$	0.0280(7)	0.0408(8)	0.0338(7)	0.000	0.0001(7)	0.000
$\mathrm{Al}(16)$	0.0189(5)	0.0159(5)	0.0134(5)	-0.0026(4)	-0.0003(4)	0.0024(5)
$\mathrm{Al}(17)$	0.0208(5)	0.0145(5)	0.0144(5)	-0.0007(4)	$0.0025(5)$	$0.0008(5)$
$\mathrm{Al}(18)$	0.0162(5)	0.0148(5)	0.0157(5)	-0.0011(4)	0.0017 (5)	$0.0019(5)$
$\mathrm{Al}(19)$	0.0113(9)	0.0114(9)	0.0144(9)	-0.0045(9)	0.0035(9)	-0.0021(9)
$\mathrm{Al}(20)$	$0.0139(14)$	0.0048(12)	0.0142(14)	0.000	-0.0044(13)	0.000
$\mathrm{Al}(21)$	0.0106(9)	0.0091(9)	0.0095(8)	0.0034(8)	-0.0005(8)	$-0.0017(9)$
$\mathrm{Al}(22)$	0.0122(9)	0.0167(1)	0.0108(9)	0.0017(9)	0.0004(8)	$0.0007(9)$
Al(23)	0.0148(1)	0.0158(1)	0.0194(1)	0.000	-0.0029(1)	0.000
$\mathrm{Al}(24)$	0.0192(1)	0.0213(1)	0.0220(1)	-0.0013(1)	-0.0072(1)	-0.0063(1)
$\mathrm{Al}(25)$	0.0129(1)	0.0193(1)	0.0143(1)	-0.0015(1)	0.000	0.000
$\mathrm{Al}(26)$	0.0122(9)	0.0245(1)	0.0110(8)	-0.0069(8)	-0.0035(8)	$-0.0009(9)$
$\mathrm{Al}(27)$	0.0143(1)	0.0193(1)	0.0194(1)	$0.0042(12)$	0.000	0.000
$\mathrm{Al}(28)$	0.114(3)	0.066(2)	0.102(3)	0.000	0.000	0.000

many hexagonal intermetallic phases, such as $\mathrm{Al}_{9} \mathrm{Mn}_{3} \mathrm{Si}$ (Robinson 1952, Kripjakevich 1977), $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Shoemaker et al 1989), $\kappa-\mathrm{AlCrNi}$ (Sato et al 1997), $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ (Kreiner and Franzen 1997) and $v-\mathrm{Al}_{4}(\mathrm{Fe}, \mathrm{Cr})$ (Mo et al 2000).

Around $\mathrm{TM}(11)$ at the centre of figure 1 (b), there is a ring of six icosahedra, centred at $\mathrm{TM}(2)$ and $\mathrm{TM}(5)$ atoms, respectively, sharing a triangular face (drawn in thick dotted lines) between two neighbouring icosahedra. This ring of six face-sharing icosahedra is called here an I6F cluster. As pointed out by Higashi et al (1981) in $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$, this is the outer ring of six icosahedra around $\mathrm{TM}(11)$. In addition, there is also an inner ring of six icosahedra with centres at $\mathrm{TM}(9)$ and $\mathrm{Al}(5)$, respectively (for clarity, only two of them are drawn in figure 1 (b)).

Figure 2. (a) The pseudo-icosahedron centred at $\mathrm{TM}(10)$ in FP^{\prime} p layers with the partially occupied site $\mathrm{Al}(25)$ in the P^{\prime} layer and the split sites $\mathrm{Al}(19), \mathrm{Al}(20), \mathrm{Al}(22)$ and $\mathrm{Al}(23)$ in the p layer, $\mathrm{CN}_{\text {eff }}=11.4$. The shaded region is a tetrahedron. (b) The pseudo-icosahedron centred at $\mathrm{TM}(6)$ in the PFP^{\prime} layers with the partially occupied $\mathrm{Al}(27)$ and $\mathrm{Al}(28)$ sites in the F layer and the split sites $\mathrm{Al}(19)$ and $\mathrm{Al}(23)$ in the P and P^{\prime} layers; $\mathrm{CN}_{\text {eff }}=11.6$.

Two neighbouring icosahedra of this ring interpenetrate into each other. Following the name used for I3P, this ring of six interpenetrated icosahedra is called here an I6P cluster. Between the inner and outer rings of six icosahedra, there are further six I3P clusters and one of these (icosahedra centred at $\mathrm{TM}(5), \mathrm{TM}(9)$ and $\mathrm{Al}(5)$ surrounding $\mathrm{TM}(10)$ with the overlapped region heavily shaded in figure $1(\mathrm{~b})$) is marked in figure 1 (a). The $\mathrm{TM}(11)$ atom is located at the centre of a hexagonal antiprism. Such a hexagonal configuration of icosahedra with six-fold symmetry occurs frequently as a real hexagonal motif in hexagonal intermetallic phases, such as $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ (Kreiner and Franzen 1997). The large I6F cluster in figure 1(a) is connected to other icosahedral clusters, I3V and I3P, in the PFP' layer block by pentagonal prisms centred at $\mathrm{Al}(1), \mathrm{Al}(4)$ and $\mathrm{Al}(12)$.

Thus, it becomes clear that all TM atoms in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$, except $\mathrm{TM}(11)$ at the centre of a hexagonal antiprism, have icosahedral (coordination number $\mathrm{CN}=12$) or pseudo-icosahedral coordination (effective $\mathrm{CN}_{\text {eff }} \approx 12$) and most of them have their centres in the F and f layers. However, the icosahedra centred at $\mathrm{TM}(1), \mathrm{TM}(4), \mathrm{TM}(6)$ and $\mathrm{TM}(10)$ as well as the $\mathrm{TM}(11)$ polyhedron all consist of Al sites of split occupancy (see figure 2) and this will be further discussed below.

4.3. Partial and/or split occupancy

Partial and/or split occupancy is a common phenomenon in Al-TM intermetallic compounds and sometimes more than 15% of the atomic sites are unoccupied. This is shown by their Pearson symbol: $\mathrm{Al}_{68} \mathrm{Pd}_{20} \mathrm{Ru}_{12}$, $c P 296-49.15$ (Mahne and Steurer 1996), $\mathrm{Al}_{57.3} \mathrm{Cu}_{31.4} \mathrm{Ru}_{11.3}$, $c P 140-25.1$, calculated from table 2 of Sugiyama et al (2000) and $\mathrm{Al}_{2.75} \mathrm{Ir}, c P 60-30$, calculated from table 2 of Grin et al (1997). From table 3 it can be seen that the split atomic sites with $1 / 2$ occupancy ($\mathrm{Al}(19)-\mathrm{Al}(24))$ and partial (about $2 / 3)$ occupancy $(\mathrm{Al}(25)-\mathrm{Al}(28))$ are located close to the (002) plane with a dense population of triangles, figures 1(a) and (b). In the structure of the cubic $\mathrm{Al}_{68} \mathrm{Pd}_{20} \mathrm{Ru}_{12}$, there is also such a dense packing of triangles in the (001) plane and many partial and split atomic sites, see figure 3(b) in Mahne and Steurer (1996).

A part of the partial and split atomic sites in figure 1(b) is enlarged in figure 3, in which the split atomic sites $\mathrm{Al}(19)-\mathrm{Al}(24)$ in the P and P^{\prime} layers are drawn in dotted circles. These

Figure 3. Enlarged part of the top-left corner of figure 1(b) showing the pseudo-icosahedra centred at $\mathrm{TM}(4)$ and $\mathrm{Al}(13)$ as well as the split atomic sites $\mathrm{Al}(19)-\mathrm{Al}(24)$ in the P and P^{\prime} layers (drawn in dotted circles).

Figure 4. (a) Two alternative pseudo-icosahedra centred at $\mathrm{TM}(10)$ drawn in thick and thin lines. $\mathrm{CN}_{\text {eff }} \approx 12.7$. (b) The polyhedron surrounding the $\mathrm{TM}(11)$ atom at $0.1139,0,0$ with four symmetrical, split atomic sites $\mathrm{Al}(20)$ in the p layer; $\mathrm{CN}_{\text {eff }}=15$.
atomic sites are too closely located to be fully occupied, such that the distance between two split $\mathrm{Al}(20)$ sites is only 0.13 nm and that between $\mathrm{Al}(19)$ and $\mathrm{Al}(20)$ is 0.17 nm . The distance between $\mathrm{Al}(19)$ in the P or P^{\prime} layer and $\mathrm{Al}(28)$ in the F layer is 0.1629 nm (not given in figure 3 , see figure 2(b)). The two sets of pentagonal antiprisms centred at $\mathrm{Al}(13)$ and $\mathrm{TM}(4)$ are drawn in different broken lines. Figure 4(a) shows the configuration of two sets of icosahedral sites around $\mathrm{TM}(4)$, one set drawn in full lines and the other in dotted lines. Either set of icosahedral sites can be occupied provided that the other set is vacant, i.e. 0.50 occupancy for the $\mathrm{Al}(19)$ to $\mathrm{Al}(24)$ sites in the $\mathrm{P} / \mathrm{P}^{\prime}$ layers. For the $\mathrm{Al}(26)$ to $\mathrm{Al}(28)$ sites in the F plane, the partial occupancy is $0.64-0.67$ (for such a pair of Al sites, one is in this unit cell and the other one is in the neighbouring cell). This also applies to the icosahedra surrounding $\mathrm{TM}(1)$ and $\mathrm{Al}(13)$. However, instead of a CN of $12, \mathrm{TM}(1), \mathrm{TM}(4)$ and $\mathrm{Al}(13)$ have an effective $\mathrm{CN}_{\text {eff }} \approx 2+16 \times 1 / 2+4 \times 2 / 3 \approx 12.7$. These icosahedra form a chain along the [010] direction in the (002) plane. It is of interest to note in figure 3 that the occupancy drops from

Figure 5. Triangular structural motif (shaded) in the PFP^{\prime} layers of the hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ with F at $z=1 / 4$ (calculated from the data of Shoemaker et al (1989))
about $2 / 3$ for the $\mathrm{TM}(6)$ and $\mathrm{Al}(25)-\mathrm{Al}(28)$ sites to $1 / 2$ for the $\mathrm{Al}(19)-\mathrm{Al}(24)$ sites as they approach the (002) plane.

Another icosahedron in the PFP^{\prime} layer block having similar partial and split atomic sites is that surrounding $\mathrm{TM}(6)$, figure 2(b). In addition to the partial atomic sites $\mathrm{Al}(27)$ and $\mathrm{Al}(28)$ in the F layer, there are also split atomic sites $\mathrm{Al}(23)$ and $\mathrm{Al}(19)$ in the P and P^{\prime} layers falling at the same positions as $\mathrm{Al}(27)$ and $\mathrm{Al}(28)$, respectively, in the [100] projection, see figure 3 . The distance between $\mathrm{Al}(19)$ and $\mathrm{Al}(28)$ shown in figure 2(b) is too short to be occupied simultaneously. One possibility is the top triangle switching between $\mathrm{Al}(28)-\mathrm{Al}(23)-\mathrm{Al}(23)$ and $\mathrm{Al}(27)-\mathrm{Al}(19)-\mathrm{Al}(19)$. This pseudo-icosahedron has a $\mathrm{CN}_{\text {eff }}=11.6$. On the other hand, the icosahedron with its centre at $\mathrm{TM}(10)$ in the FP^{\prime} p layer block, figure 2(a), has only split atomic sites of $\mathrm{Al}(19), \mathrm{Al}(20), \mathrm{Al}(22)$ and $\mathrm{Al}(23)$ in the p layer. It has a $\mathrm{CN}_{\text {eff }}=11.4$.

Finally, the polyhedron surrounding $\mathrm{TM}(11)$ is shown in figure $4(\mathrm{~b})$. If one single atom in the p layer were located directly above the $\mathrm{TM}(11)$ atom, then it would be a $\mathrm{CN}=14$ Kasper polyhedron of $\overline{6}$ symmetry. However, there are instead four symmetric $\mathrm{Al}(20)$ atomic sites and one possibility is to choose a diagonal pair to form a $\mathrm{CN}_{\text {eff }}=15$ polyhedron.

4.4. Triangular and hexagonal motifs

There are two large structural motifs in figure 1(a): one is the shaded triangular area consisting of I3V and I3P icosahedral clusters; the other is the hexagonal area within the bold lines consisting of I6F and I6P as well as I3P clusters. However, these structural motifs have only two-fold rotational symmetry in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$. After ordering, such structural motifs may display three- or six-fold symmetry and are naturally expected to exist in hexagonal approximants with a large a parameter. In fact, a triangular motif with three-fold symmetry has indeed been found in the PFP^{\prime} layer block (F at $z=1 / 4$) around the three-fold axis in $\mu-\mathrm{Al}_{4} \mathrm{Mn}$, figure 5 (Shoemaker et al 1989). Since the family of hexagonal $\kappa-\mathrm{Al}(\mathrm{Cr}, \mathrm{Ni})$, $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ and $v-\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ phases are structurally related to $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Mo et al 2000), this structural motif should also appear in these structures too. Indeed, one such motif appears in $\kappa-\mathrm{Al}(\mathrm{Cr}, \mathrm{Ni})$ around the three-fold axis (Li et al 1997a, Sato et al 1997) and figure 6 is the PFP^{\prime} layer block calculated from their data. Moreover, the c parameter of the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$, as mentioned above, is closely related to the a parameter of the hexagonal κ $\mathrm{Al}(\mathrm{Cr}, \mathrm{Ni})$. In $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ (Kreiner and Franzen 1997), the three triangular structural motifs around a three-fold axis partly overlap each other, figure 7 (also calculated). Moreover, there is also a larger hexagonal structural motif, outlined in bold lines, geometrically similar to that

Figure 6. Triangular structural motif (shaded) in the PFP^{\prime} layers of the hexagonal $\kappa-\mathrm{Al}(\mathrm{Cr}, \mathrm{Ni})$ with F at $z=1 / 4$ (calculated from the data of Sato et al (1997)).

Figure 7. Triangular (shaded) and hexagonal (bold lines) structural motifs in the PFP^{\prime} layers of the hexagonal $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ with F at $z=1 / 4$ (calculated from the data of Kreiner and Franzen (1997)).
shown in figure $1(\mathrm{a})$. In the hexagonal $\nu-\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ having an even larger a parameter (Mo et al 2000), these three triangular structural motifs are completely separated, figure 8. It is of interest to note that the hexagonal κ, λ and v phases all have a c parameter of about 1.25 nm and six layers $\mathrm{PFP}^{\prime} \mathrm{pfp}^{\prime}$ stacked in a c period, but the pfp^{\prime} layer block in these cases is related to the PFP^{\prime} one by a 6_{3} screw axis. However, the triangular structural motif in these hexagonal phases, unlike $\mu-\mathrm{Al}_{4} \mathrm{Mn}$, is skew with respect to the a_{1} and a_{2} axes (Mo and Kuo 2000).

The orthorhombic $\varepsilon-\mathrm{Al}_{4} \mathrm{Cr}$ (Wen et al 1992, Li et al 1997b) is structurally closely related to the hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Shoemaker et al 1989): $a_{\varepsilon}=a_{\mu}, b_{\varepsilon}=\sqrt{ } 3 b_{\mu}$ and $c_{\varepsilon}=1 / 2 c_{\mu}$. Two such triangular structural motifs can be found in the [001] projection of $\varepsilon-\mathrm{Al}_{4} \mathrm{Cr}$, figure 9 (also calculated). It is of interest to note that these triangular motifs expand vertically in figure 9 to include a heavily shaded region in figure 9 which is geometrically the same as that

Figure 8. Triangular structural motif (shaded) in the PFP^{\prime} layers of the hexagonal $v-\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ with F at $z=1 / 4$ (calculated from the data of Mo et al (2000)).

Figure 9. Triangular structural motif (shaded) in the PFP^{\prime} layers (F at $x=0$) of the orthorhombic $\varepsilon-\mathrm{Al}_{4} \mathrm{Cr}$ (full circles) related to the hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Cr} / \mu-\mathrm{Al}_{4} \mathrm{Mn}$ (calculated from the data of Li et al (1997b)).
between the two triangular motifs in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ shown in figure 1(a). In other words, both the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ and the hexagonal $\varepsilon-\mathrm{Al}_{4} \mathrm{Cr}$ consist of two similar triangular motifs. However, the triangular motifs in $\varepsilon-\mathrm{Al}_{4} \mathrm{Cr}$ move sidewise and expand vertically so that both the lattice parameters shown in figure 9 are somewhat larger than their counterparts in $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$.

Since $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ and $\lambda-\mathrm{Al}_{4} \mathrm{Mn}$ are well known quasicrystalline approximants of the $\mathrm{Al}-$ Mn decagonal quasicrystal (Audier and Guyot 1986, Bendersky 1987), these relatively large structural motifs in the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ might also occur in the structure of $\mathrm{Al}-\mathrm{TM}$ decagonal quasicrystals.

5. Concluding remarks

(1) The crystal structure of the orthorhombic phase $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ has been determined by single-crystal x-ray diffraction. There are $39(28 \mathrm{Al}+11 \mathrm{Cr} / \mathrm{Fe})$ independent atoms in a unit cell. A number of Al sites in the cell have partial or split occupancies. Accordingly, the effective coordination numbers of the pseudo-icosahedral are $\mathrm{CN}_{\text {eff }} \neq 12$.
(2) In the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$, there are six layers, $\mathrm{PFP}^{\prime} \mathrm{pfp}^{\prime}$, along the a axis. F and f are flat layers at $x=0$ and $1 / 2$, respectively, and they are related by a body centred translation. Both F and f layers are sandwiched between two puckered layers, $\mathrm{P} / \mathrm{P}^{\prime}$ and $\mathrm{p} / \mathrm{p}^{\prime}$, respectively, in mirror reflection positions.
(3) As an important structural character of the Al-TM alloys, the icosahedral connection in the orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ is discussed in detail. In addition, two large triangular icosahedral clusters are drawn and compared with the related Al-TM phases with different symmetries.
(4) Geometrically, the large icosahedral clusters in orthorhombic $\mathrm{Al}_{4}(\mathrm{Cr}, \mathrm{Fe})$ and related phases have triangular and/or hexagonal shapes, but chemically they do not have three- or six-fold symmetry, as can be seen from the point group symmetry mmm of this structure. By means of ordering, however, icosahedral clusters of three- and six-fold symmetry can exist and various hexagonal structures can result.

Acknowledgments

This work was generously supported by the Chinese Academy of Sciences and by the National Natural Science Foundation of China (no 10074073 and G2 032/9). Dr R G Wang, Analytical Centre of Chemistry Department, Tsinghua University, kindly collected the x-ray data for us. We are grateful to Professors Clare B Shoemaker, W Steurer and K Hiraga for many constructive suggestions. Drs Z Shi, R G Wang and H Y Zhou are thanked for valuable discussions.

References

Audier M, Durand-Charre M, Rosell-Laclau E and Klein H 1995 J. Alloys Compounds 220225
Audier M and Guyot P 1986 J. Physique Coll. 47 C3 405
Bendersky L 1987 J. Microsc. 14630
Bendersky L A, Roth R S, Ramon J T and Shechtman D 1991 Metall. Trans. A 225
Deng D W and Kuo K H 2002 J. Alloys Compounds 342101
Grin Y, Peters K, Burkhardt U, Gotzmann K and Ellner M 1997 Z. Kristallogr. 212439
Higashi I, Shiotani N, Uda M, Mizoguchi T and Katoh H 1981 J. Solid State Chem. 36225
Keller E 1992 SCHAKAL 92: A Computer Program for Graphic Representation of Crystallographic Models (Freiburg, Germany: University of Freiburg)
Kopfmann G and Hubber R 1968 Acta Crystallogr. A 24348
Kreiner G and Franzen H F 1995 J. Alloys Compounds 22115
Kreiner G and Franzen H F 1997 J. Alloys Compounds 26183
Kripjakevich N I 1977 Structure Types of Intermetallic Compounds (Moscow: Nauka) (in Russian)
Kuo K H 1990 J. Less-Common Met. 1639
Le Lann A and Shoemaker C B 1993 J. Non-Cryst. Solids 153/154 654

Li X Z, Hiraga K and Yamamoto A 1997a Phil. Mag. A 76657
Li X Z, Sugiyama K, Hiraga K, Sato A, Yamamoto A, Sui H X and Kuo K H 1997b Z. Kristallogr. 212628
Liao X Z 1991 MEng. Thesis Dalian University of Technology, Dalian, China
Mahne S and Steurer W 1996 Z. Kristallogr. 21117
Mo Z M and Kuo K H 2000 Mater. Sci. Eng. 294-296 242
Mo Z M, Zhou H Y and Kuo K H 2000 Acta Crystallogr. B 56392
Robinson K 1952 Acta Crystallogr. 5397
Rosell-Laclau E, Durand-Charre M and Audier M 1996 J. Alloys Compounds 233246
Sato A, Yamamoto A, Li X Z, Hiraga K, Haibach T and Steurer W 1997 Acta Crystallogr. 531531
Sheldrick G M, Kruer C and Goddard R 1985 Crystallographic Computing (New York: Oxford University Press)
Shoemaker C B, Keszler D A and Shoemaker D P 1989 Acta Crystallogr. B 4513
Singh A and Ranganathan S 1994 Mater. Sci. Eng. A 181/182 754
Singh A, Ranganathan S and Bendersky L A 1997 Acta Mater. 455327
Sugiyama K, Kato T, Ogawa T, Hiraga K and Saito K 2000 J. Alloys Compounds 299169
Sui H X, Liao X Z and Kuo K H 1995 Phil. Mag. Lett. 71139
Sui H X, Liao X Z, Kuo K H, Zou X and Hovmoller S 1997 Acta Crystallogr. B 53587
Wen K Y, Chen Y L and Kuo K H 1991 Quasicrystals ed K H Kuo and T Ninomiya (Singapore: World Scientific) p 134
Wen K Y, Chen Y L and Kuo K H 1992 Metall. Trans. A 232437
Würschum R, Troev T and Grushko B 1995 Phys. Rev. B 526411

[^0]: 1 Address for correspondence: IFF, Forschungszentrum, Jülich GmbH, D-52425 Jülich, Germany.

